Relational Part-Aware Learning for Complex Composite Object Detection in High-Resolution Remote Sensing Images

From geohpgc
Revision as of 06:23, 22 August 2024 by Zhang-yating (talk | contribs) (Created page with "==Abstract== In high-resolution remote sensing images (RSIs), complex composite object detection (e.g., coal-fired power plant detection and harbor detection) is challenging due to multiple discrete parts with variable layouts leading to complex weak inter-relationship and blurred boundaries, instead of a clearly defined single object. To address this issue, this article proposes an end-to-end framework, i.e., relational part-aware network (REPAN), to explore the semanti...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Abstract

In high-resolution remote sensing images (RSIs), complex composite object detection (e.g., coal-fired power plant detection and harbor detection) is challenging due to multiple discrete parts with variable layouts leading to complex weak inter-relationship and blurred boundaries, instead of a clearly defined single object. To address this issue, this article proposes an end-to-end framework, i.e., relational part-aware network (REPAN), to explore the semantic correlation and extract discriminative features among multiple parts. Specifically, we first design a part region proposal network (P-RPN) to locate discriminative yet subtle regions. With butterfly units (BFUs) embedded, feature-scale confusion problems stemming from aliasing effects can be largely alleviated. Second, a feature relation Transformer (FRT) plumbs the depths of the spatial relationships by part-and-global joint learning, exploring correlations between various parts to enhance significant part representation. Finally, a contextual detector (CD) classifies and detects parts and the whole composite object through multirelation-aware features, where part information guides to locate the whole object. We collect three remote sensing object detection datasets with four categories to evaluate our method. Consistently surpassing the performance of state-of-the-art methods, the results of extensive experiments underscore the effectiveness and superiority of our proposed method.